jueves, 15 de noviembre de 2007

EL LÁSER, UNA HERRAMIENTA TAN ÚTIL COMO DESTRUCTIVA


EL LÁSER


"Light Amplification by Stimulated Emission of Radiation"


Es un dispositivo que utiliza un efecto de la mecánica cuántica, la emisión inducida o estimulada, para generar un haz de luz coherente de un medio adecuado y con el tamaño, la forma y la pureza controlados.



Historia del láser


En 1916, Albert Einstein estableció los fundamentos para el desarrollo de los láseres y de sus predecesores, los máseres (que emiten microondas), utilizando la ley de radiación de Max Planck basada en los conceptos de emisión espontánea e inducida de radiación. La teoría fue olvidada hasta después de la Segunda Guerra Mundial.


Uso de láseres

El tamaño de los láseres varía ampliamente, desde diodos láser microscópicos (arriba) con numerosas aplicaciones, al láser de cristales de neodimio con un tamaño similar al de un campo de fútbol, (abajo) usado para la fusión de confinamiento inercial, investigación sobre armas nucleares de destrucción masiva u otros experimentos físicos en los que se presenten altas densidades de energía

Cuando se inventó en
1960, se denominaron como "una solución buscando un problema a resolver". Desde entonces se han vuelto omnipresentes. Se pueden encontrar en miles de variadas aplicaciones en cualquier sector de la sociedad actual. Estas incluyen campos tan dispares como la electrónica de consumo, las tecnologías de la información (informática), análisis en ciencia, métodos de diagnóstico en medicina, así como el mecanizado, soldadura o sistemas de corte en sectores industriales y militares.

En bastantes aplicaciones, los beneficios de los láseres se deben a sus propiedades físicas como la coherencia, la alta monocromaticidad y la capacidad de alcanzar potencias extremadamente altas. A modo de ejemplo, un haz láser altamente coherente puede ser enfocado por debajo de su límite de difracción que, a longitudes de onda visibles, corresponde solamente a unos pocos nanómetros. Esta propiedad permite al láser grabar gigabytes de información en las microscópicas cavidades de un DVD o CD. También permite a un láser de media o baja potencia alcanzar intensidades muy altas y usarlo para cortar, quemar o incluso sublimar materiales.
El rayo láser se emplea en el
proceso de fabricación de grabar o marcar metales, plásticos y vidrio .

seres de estado sólido


Se caracterizan porque el medio que produce la amplificación de la radiación tiene estado sólido. Generalmente se les conoce con el nombre de este medio activo. Son sin duda los láseres más utilizados porque proveen los pulsos más intensos y porque requieren unas rutinas de mantenimiento mucho menores y más baratas. El primer láser de estado sólido que se desarrolló fue el láser de Rubí, pero en la actualidad los láseres más utilizados son los granates de itrio y aluminio (YAG) dotados con diversos elementos como cromo (Cr) o neodimio (Nd). Los extremos de la varilla se tallan de forma que sus superficies sean paralelas y se recubren con una capa reflectante no metálica. Los láseres de estado sólido proporcionan las emisiones de mayor energía


Láseres de gas


El medio de un láser de gas puede ser un gas puro, como en el láser de nitrógeno, una mezcla de gases o incluso un vapor metálico, como en el láser de vapor de cobre. Suele estar contenido en un tubo cilíndrico de vidrio o cuarzo. En el exterior de los extremos del tubo se sitúan dos espejos para formar la cavidad del láser. Los láseres de gas son bombeados por luz ultravioleta, haces de electrones, corrientes eléctricas o reacciones químicas. El láser de helio-neón resalta por su elevada estabilidad de frecuencia, pureza de color y mínima dispersión del haz. Los láseres de dióxido de carbono son muy eficientes, y son los láseres de onda continua (CW, siglas en inglés) más potentes


Láseres líquidos


Los medios más comunes en los láseres líquidos son tintes inorgánicos contenidos en recipientes de vidrio. Se bombean con lámparas de destello intensas —cuando operan por pulsos— o por un láser de gas —cuando funcionan en modo CW. La frecuencia de un láser de colorante sintonizable puede modificarse mediante un prisma situado en la cavidad del láser.

Láseres de electrones libres


En 1977 se desarrollaron por primera vez láseres que emplean para producir radiación haces de electrones, no ligados a átomos, que circulan a lo largo de las líneas de un campo magnético; actualmente están adquiriendo importancia como instrumentos de investigación. Su frecuencia es regulable, como ocurre con los láseres de colorante, y en teoría un pequeño número podría cubrir todo el espectro, desde el infrarrojo hasta los rayos X. Con los láseres de electrones libres debería generarse radiación de muy alta potencia que actualmente resulta demasiado costosa de producir. Ver Radiación de sincrotrón

No hay comentarios: